Broj 5
Šime Šuljić
Mandelbrotov skup
Pravilo. Uzmemo neki kompleksni broj c. Kvadriramo ga i dodamo sam početni broj c; ono što dobijemo, opet kvadriramo i dodamo početni broj c; ono što dobijemo, opet kvadriramo i dodamo početni broj c, itd. Takav niz iteracija možemo iskazati formulama:
z1 = z02+ c z2 = z12+ c z3 = z22+ c … zn+1 = zn2 + c,
Upišite realni dio broja: x = , upišite imaginarni dio broja: y = .
Re z
Im z
|z|
1.
I računalo bi moglo stenjati! Primijetit ćete da deset iteracija nije dovoljno da bi se utvrdilo hoće li neki niz ostati ograničen. Programeri obično postavljaju broj iteracija na nekoliko stotina, a korisniku daju mogućnost daljnjeg povećanja njihovog broja. Time se dobivaju precizniji obrisi Mandelbrotovog skupa, ali slika nastaje mnogo sporije. Inače, dovoljno je ispitivati samo dio ravnine između -2.5 i 1 po realnoj osi, odnosno od -1.5 do 1.5 po imaginarnoj osi. Utvrđeno je da čim modul nekog broja u iterativnom postupku prijeđe po vrijednosti broj 2, niz postaje neograničen. Obično se Mandelbrotov skup crta crnom bojom. Odakle ona 'šarolikost' u okolini skupa? Ako računalo utvrdi da niz iteracija postaje neograničen u k-tom koraku, dodjeljuje mu k-tu boju.
5. Iterativni rep ►