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Abstract

In this paper, we explore poset games, a large class of combinatorial games which includes

Nim, Chomp, Hackendot, Subset-Takeaway, and others. We prove a general theorem about

poset games, which we call the Poset Game Periodicity Theorem: as a poset expands along

two chains, losing positions and positions with any fixed g-value have a periodic pattern.

We use the theorem to (1) find polynomial-time winning strategies for a new, large class

of poset games, (2) resolve two open conjectures about the game of Chomp, and (3) prove

several important results about the computational complexity of calculating g-values in poset

games.



1 Summary of Motivation

I found poset games a particularly appealing topic for mathematics research for four reasons:

(1) I was intrigued by the way that poset games with simple rules could have very complex

structure; (2) the literature of poset games includes many problems that have long remained

unsolved, which makes it an exciting area; (3) combinatorial game theory is relevant to a

number of real-world problems, with particular applications in computer science and eco-

nomics; and (4) finding a winning strategy to a combinatorial game is an especially tangible

and satisfying result.

2 Introduction

This paper analyzes a class of two-player games known as poset games. A poset (partially-

ordered set) is a mathematical object satisfying a few simple properties, and any poset can be

turned into a two-player game in a straightforward way. Poset games, like posets themselves,

vary widely, and although a few specific types of poset games have been studied over the past

hundred years, very few results are known about poset games in general. This paper offers a

major new theorem about general poset games: as a poset expands in two directions, periodic

patterns emerge in the associated poset game not only in losing positions, but also in positions

with any fixed g-value (g-values are an important, general classification of game positions).

Using this theorem, which we name the Poset Game Periodicity Theorem, we further prove

several more specific results: (1) we resolve two open conjectures about a specific poset game

called Chomp; (2) we prove several results about the computational complexity of calculating

g-values in poset games; and (3) we give an efficient (i.e., polynomial-time) winning strategy

for a large class of poset games.

2.1 Posets and Poset Games

A partially-ordered set (poset) is a set X and a partial ordering of its elements — some

elements are smaller than other elements, but not every pair of elements can necessarily be
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compared. Specifically, if < is the relation, then for a, b, c ∈ X, the following must hold: if

a < b then b 6< a, and if a < b and b < c then a < c. We say that a > b if and only if b < a;

that a ≤ b if and only if a < b or a = b; that a ≥ b if and only if a > b or a = b; and that

a ‖ b (read: a is incomparable to b) if and only if neither a ≤ b nor a ≥ b. A chain in a poset

is a subset containing no pair of incomparable elements. For convenience later on, we will

use the following notation to compare elements of X to subsets of X: for a ∈ X and S ⊆ X,

a < S if and only if a < x for each x ∈ S; a > S and a ‖ S are defined similarly. Examples

of posets include the set of real numbers under their usual ordering, and the set of positive

integers, with n1 ≤ n2 if and only if n1 divides n2. In the latter example, the powers of a

prime p form a chain.

In order to play a poset game, given any poset A, two players take turns making moves.

On each move, a player picks an element x ∈ A, and removes all the elements of A greater

than or equal to x from the set A, to form a smaller poset A′. This becomes the new A,

then the other player picks an element, and so on. The player unable to move (when A = ∅)

loses. For the purposes of this paper, we will only consider poset games on finite posets.

2.2 Background

Since very little is known about poset games in general, the bulk of poset game literature is

directed at the study of specific types of poset games. Over the past century, many games

that are actually types of poset games have been named and studied independently. These

studies have met with mixed success.

For a few specific poset games, an efficient (polynomial-time) winning strategy has been

found. The only such non-trivial games are games on N-free posets (that is, posets with no

four elements a, b, c, d satisfying a ‖ b, a < c, a < d, b ‖ c, b < d, and c ‖ d). Such games

include Nim [1], von Neumann’s Hackendot [2], and impartial Hackenbush on trees [3]. A

general strategy for poset games on N-free posets is given in [4]. This paper will offer an

efficient winning strategy for another class of poset games, which need not be N-free.
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However, several well-known poset games have remained unsolved for as many as fifty

years, with neither a known polynomial-time winning strategy, nor a demonstration that

none exists. The results offered by this paper could jump-start progress in either of those

directions.

One such unsolved poset game is called Chomp, proposed in 1974 by D. Gale [5], and

named later by M. Gardner [6]. An m × n bar of chocolate is divided into unit squares,

and the top-left square is poisoned. On each turn, a player bites off a square, along with

all the squares directly below it, directly to the right of it, and below and to the right of

it. Eventually, one player is forced to eat the poisoned square, thus losing the game. If we

remove the poisoned square from the set and say that one chocolate square is greater than

or equal to another if the former is below and/or to the right of the latter, then we see that

this is in fact a disguised poset game.

Two other well-known unsolved poset games are Schuh’s Game of Divisors and Subset

Takeaway (also called the superset game). The former starts with the poset consisting of the

positive divisors of a fixed integer n, excluding 1, partially ordered by divisibility, and was

proposed in 1952 by F. Schuh [7]. The latter starts with the poset consisting of all subsets

of a given set, excluding the null set, partially ordered by set inclusion, and was proposed

in 1982 by D. Gale [8]. Interestingly, both Subset Takeaway and Chomp are isomorphic to

special cases of Schuh’s Game of Divisors, where the integer n is square-free or the product

of at most two distinct primes, respectively.

In Chomp, two special cases of the Poset Game Periodicity Theorem have already been

stated as conjectures. Based on previous work by D. Zeilberger [9], X. Sun wrote a Maple

program that calculated losing positions in Chomp by searching for periodic patterns with

the top two rows [10]. The success of that algorithm led him to conjecture that, when all

but the top two rows are fixed, the difference between the top two rows in losing positions

is eventually periodic with respect to the length of the second row. A. Brouwer [11] verified

that conjecture by computer in the special case of 3-rowed Chomp positions with at most
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90, 000 squares in the bottom row. Later, X. Sun wrote another Maple program, which

calculated g-values for Chomp positions [12]. In the data generated, he found a periodic

relation between the length of the top row and the g-value, when all other rows are fixed,

and conjectured that this always holds. We will see that both of these conjectures are simple

corollaries of the Poset Game Periodicity Theorem, proposed and proved in this paper.

Poset games are a branch of combinatorial game theory (that is, the study of games

with no chance or hidden information). Combinatorial game theory has applications in

fields such as artificial intelligence, computational complexity theory, the construction of

error-correcting codes, economics, and, of course, human recreation (chess, for example).

2.3 Some Game Theory Background

Since poset games are finite, impartial, combinatorial games (that is, any game will end in a

finite number of moves; in any given position, both players can make the same set of moves;

and there is no chance or hidden information), poset games fall under the Sprague-Grundy

Theory of Games. The essential property of a position is its g-value (also called grundy-value,

nim-value, or Sprague-Grundy function). A position in a game has g-value 0 if and only if

it is a losing position (a position where the player who made the previous move can always

win the game). Hence, a classification of such positions provides the basis for a winning

strategy. More generally, when we are playing a disjoint sum of several games (a two-player

game where, on each move, a player makes a move in exactly one of the component games,

or loses if he cannot move), the winning strategy can be easily constructed if the g-values

for each component game can be calculated.

Let the mex (“minimal excluded value”) of any set be the smallest nonnegative integer

not in the set. The g-value of any position is recursively defined as the mex of the set of

g-values of all game-positions that can remain after exactly one move. Thus, g-values have

two properties: First, if we start from a position with g-value k, then, for any integer n,

0 ≤ n ≤ k − 1, there is some move that leaves a position with g-value n. Second, there is
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no move from a position with g-value k to another with g-value k. (For a more complete

explanation of g-values, see [3].) For any finite poset P , let g(P ) be the g-value of the

position P in a poset game.

3 Statement of the Periodicity Theorem

In an infinite poset X, suppose we have two infinite chains C (c1 < c2 < · · · ) and D

(d1 < d2 < · · · ), and a finite subset A, all pairwise disjoint, and assume that no element of

C is less than an element of D (Figure 1 displays an example). Let

Am,n = A ∪ C ∪ D − {x ∈ X | x ≥ cm+1} − {x ∈ X | x ≥ dn+1}

(that is, Am,n is the position that results from starting with the poset A∪C∪D, then making

the two moves cm+1 and dn+1). Let k be a nonnegative integer. Then the Poset Game

Periodicity Theorem states that either (1) there are only finitely many different Am,n with

g-value k, or (2) we can find a positive integer p such that, for large enough n, g(Am,n) = k

if and only if g(Am+p,n+p) = k. Thus, as the poset A expands along the chains C and D,

positions with any fixed g-value have a regular structure.

d1 d2 d3

c1 c3c2

. . .
. . .

A

Figure 1: An example of a poset game (Chomp) to which the Periodicity Theorem applies

The paper will proceed as follows: in Section 4, we define terms and prove nine rather

technical lemmas; in Section 5, we use these tools to prove the periodicity theorem; in

Section 6, we provide some important corollaries and implications of the theorem; and in
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Section 7, we suggest possible avenues for future work.

4 Preliminaries for the Periodicity Theorem

For the rest of the paper, we will assume the following:

(X, <) is an infinite poset, containing two infinite chains C and D, and a

finite subset A, all pairwise disjoint; C = {c1, c2, . . . , } with c1 < c2 < · · · ;

D = {d1, d2, . . . , }, with d1 < d2 < · · · ; and if c ∈ C and d ∈ D, then c 6< d. (1)

For m, n ∈ N0, let

Am,n = A ∪ C ∪ D − {x ∈ X | x ≥ cm+1} − {x ∈ X | x ≥ dn+1}

and let

Q(A) = {k ∈ N0 | only finitely many positions of the form Am,n have g-value k}.

Note that this is not the same as saying that there are only finitely many solutions (m, n)

to g(Am,n) = k. For example, if c2 > d2, then, as we will see, A1,1, A2,1, A3,1, etc. are all the

same position.

Lemma 1. Suppose (m1, n1) 6= (m2, n2). Then Am1,n1
= Am2,n2

if and only if n1 = n2,

cm1+1 > dn1+1, and cm2+1 > dn1+1.

Proof. Suppose (m1, n1) 6= (m2, n2) and Am1,n1
= Am2,n2

. Since no element of D is greater

than an element of C, Am,n ∩ D = ∅ if and only if n = 0, and max(Am,n ∩ D) = di if and

only if i = n. Hence, we can recover n from the position Am,n, so if Am1,n1
= Am2,n2

then

n1 = n2 = n. Since (m1, n) 6= (m2, n), m1 6= m2, so without loss of generality, assume

m1 > m2. If cm2+1 6> dn+1 then cm2+1 would be in Am1,n but not Am2,n, contradicting the

fact that they are equal. Hence, cm2+1 > dn1+1 and cm1+1 > cm2+1 > dn1+1. Conversely,

suppose n1 = n2 = n, cm1+1 > dn+1, and cm2+1 > dn+1. Then

Am1,n1
= Am1,n = A ∪ C ∪ D − {x ∈ X | x ≥ dn+1} = Am2,n = Am2 ,n2

.
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Lemma 2. If n1 6= n2, then g(Am,n1
) 6= g(Am,n2

).

Proof. Without loss of generality, assume n1 < n2. Since dn1+1 ∈ Am,n2
, if we start with

Am,n2
and make the move dn1+1, the resulting position is

A ∪ C ∪ D − {x ∈ X | x ≥ cm+1} − {x ∈ X | x ≥ dn2+1} − {x ∈ X | x ≥ dn1+1}

= A ∪ C ∪ D − {x ∈ X | x ≥ cm+1} − {x ∈ X | x ≥ dn1+1}

= Am,n1
.

Since we can get from Am,n2
to Am,n1

in one move, their g-values must differ.

Lemma 3. If cm1+1 6> dn+1 and m1 6= m2, then g(Am1,n) 6= g(Am2,n).

Proof. This proof is similar to the proof of Lemma 2. If m2 < m1, then, since cm2+1 < cm1+1,

cm2+1 6> dn+1 also. Hence, without loss of generality, assume m1 < m2. Since cm1+1 6> dn+1,

cm1+1 ∈ Am2,n. Thus, if we start with Am2,n, we can make the move cm1+1 and get Am1,n.

Since there is a move from Am2,n to Am1,n, their g-values must differ.

Lemma 4. k ∈ Q(A) if and only if one of the following is true: (i) There exists m, n ∈ N0

such that cm+1 > dn+1 and g(Am,n) = k, or (ii) there exists an a ∈ A, m, n ∈ N0 with

a < cm+1, a < dn+1, and g(Am,n − {x ∈ X | x ≥ a}) = k.

Proof. First, suppose cm+1 > dn+1 and g(Am,n) = k. Let P = Am,n. By Lemma 1, for any

i ≥ m, P = Ai,n. By Lemma 2, for each i ≥ m, P = Ai,n is the only position Ai,y that has

g-value k. Also by Lemma 2, there are at most m positions of the form Ai,y with g-value k

for 0 ≤ i ≤ m − 1 (at most one for each such i). Thus, in total, there are at most m + 1

different positions of the form Ax,y with g-value k, which is finite, so k ∈ Q(A).

Second, suppose (ii) holds. If we make the move a from the position Am′,n′ for m′ > m

and n′ > n, we will get a position with g-value k. Hence, if m′ > m and n′ > n, then

g(Am′,n′) 6= k. For each m′ ≤ m, by Lemma 2, there is at most one position Am′,n′ with

g-value k. For each n′ ≤ n, by Lemmas 1 and 3, there is at most one position of the form
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Am′,n′ with g-value k. Hence, there are at most m + n + 2 positions of the form Am′,n′ with

g-value k, so k ∈ Q(A).

Finally, suppose that k ∈ Q(A). Since any Am,n is finite, we can find an M and N such

that, if cM ∈ Am,n or if dN ∈ Am,n, then g(Am,n) 6= k. By Lemma 2, we can find a y > N

such that g(AM,y) > k. Let z be a move that takes AM,y to a position with g-value k. Since

dN and cM are not in the resulting position, z < dN , and either dy+1 < cM or z < cM . Since

dN < dy+1, we get z < dN and z < cM . Since z < dN , either z ∈ D, in which case (i) holds,

or z ∈ A, in which case (ii) holds.

If k ∈ Q(A), whether (i) or (ii) occurs, there is a number T (A, k) ∈ N0 such that, if

n ≥ T (A, k), then there is a move from Am,n to a position with g-value k, no matter what

the value of m. If (i) holds, then cm′+1 > dn′+1 with g(Am′,n′) = k, and if (ii) holds, then,

for some a ∈ A, a < cm′+1, a < dn′+1, and g(Am′,n′ − {x ∈ X | x ≥ a}) = k. For each

m, by Lemma 2, there exists an nm such that, if n ≥ nm, then g(Am,n) > k. If we let

T (A, k) = max(n0, n1, . . . , nm′ , n′ + 1), it will have the desired property. Now, let

W (A, k) = max({T (B, j) | B ⊆ A, j ≤ k, j ∈ Q(B)})

with max(∅) interpreted as 0. We will use this function later.

Lemma 5. If g(Am,n) = k, then n − m ≤ |A| + k. Also, if k 6∈ Q(A), or if cm+1 6> dn+1,

then |n − m| ≤ |A| + k.

Proof. Suppose g(Am,n) = k. Let

S = {n′ ∈ N0 | 0 ≤ n′ ≤ n − 1, g(Am,n′) > k}.

For each n′ ∈ S, there is at least one move from Am,n′ to a position with g-value k. Pick one

such move, and call that move f(n′). If f(n′) < dn′+1, then we could have made the move

f(n′) from Am,n directly, which would be a move from a position with g-value k to another

with g-value k, which is impossible. Hence,

f(n′) 6< dn′+1. (2)
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Suppose that f(n′
1) = f(n′

2) = x, for n′
1 > n′

2. Since dn′

2
+1 6> x by (2), we can start with

Am,n′

1
and make the move x, leaving a position with g-value k, then make the move dn′

2
+1,

leaving another position with g-value k, a contradiction. Hence, f is injective. From (2),

f(n′) 6∈ D, so f(n′) ∈ A ∪ {c1, . . . , cm}. Since f is injective, |S| ≤ |A|+ m. By Lemma 2, at

most k values of n′ < n satisfy g(Am,n′) ≤ k. Hence, |S| ≥ n − k, so n − m ≤ |A| + k.

If k 6∈ Q(A), then, by Lemma 4, cm+1 6> dn+1. Thus, to finish the proof, we only need to

show that, if cm+1 6> dn+1, then m− n ≤ |A|+ k. The proof runs exactly like the one above,

but switching the roles of C and D, and using Lemma 3 instead of Lemma 2.

We will now add another assumption to (1), which will apply to the rest of this section:

For each a ∈ A, either a < C or a ‖ C, and either a < D or a ‖ D. (3)

Lemma 6. Assume (3). If k 6∈ Q(A), and if m ≥ |A|+ k, then there exists a unique n ∈ N0

such that g(Am,n) = k.

Proof. Suppose that k 6∈ Q(A) and m ≥ |A|+k. By Lemma 5, g(Am,m+|A|+k+1) > k. Hence,

there is a move z ∈ Am,m+|A|+k+1 that takes Am,m+|A|+k+1 to a position with g-value k. We

have six cases:

• z ∈ A, z < C, z < D: This is impossible, by Lemma 4, since k 6∈ Q(A).

• z ∈ A, z < C, z ‖ D: This is impossible, since the resulting position is B0,m+|A|+k+1,

for some B ⊂ A. By Lemma 5, this has g-value greater than k.

• z ∈ A, z ‖ C, z < D: This is impossible, since the resulting position is Bm,0, for some

B ⊂ A. Since cm+1 ‖ z < d1, cm+1 6> d1, so, by Lemma 5, since m ≥ |A|+ k > |B|+ k,

g(Bm,0) > k.

• z ∈ A, z ‖ C, z ‖ D: This is impossible, since the resulting position is Bm,m+|A|+k+1,

for some B ⊂ A. By Lemma 5, this has g-value greater than k.
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• z ∈ C: This is impossible, since the resulting position is Am′,m+|A|+k+1, for some

0 ≤ m′ ≤ m − 1. By Lemma 5, this has g-value greater than k.

• z ∈ D: In this case, z = dn+1 for some n ∈ N0, so g(Am,n) = k.

By process of elimination, the last case must occur, so, for any m ≥ |A|+ k, there exists an

n ∈ N0 such that g(Am,n) = k. Uniqueness follows from Lemma 2.

Let fA,k(m) be the unique (by Lemma 2) value satisfying g(Am,fA,k(m)) = k, whenever

it exists. We will abuse notation slightly in order to handle the case that fA,k(m) does not

exist. If α(B, j, m) is some set of conditions on B, j, and m, we will let

{fB,j(m) | α(B, j, m)} = {i | ∃B, j, m with α(B, j, m) and fB,j(m) = i}.

This allows the set on the left to still be defined, even if fB,j(m) does not always exist.

Finally, let T = {a ∈ A | a ‖ C, a ‖ D}, and let

H = {A − {x ∈ A | x ≥ a} | a ∈ T}.

Lemma 7. Assume (3). For j ∈ N0, j 6∈ Q(A), m ≥ |A|+j, and n ≥ max(|A|+j, W (A, j)),

there is a move from Am,n to a position with g-value j if and only if

n ∈ {fA,j(i) | 0 ≤ i ≤ m − 1} ∪ {fB,j(m) | B ∈ H, j 6∈ Q(B)} ∪ {i | i > fA,j(m)}. (4)

Proof. From Am,n, for m ≥ |A| + j and n ≥ max(|A| + j, W (A, j)), suppose we make move

z. Then z will satisfy exactly one of the following: (I) z ∈ A and z < C, z < D; (II) z ∈ A

and z < C, z ‖ D; (III) z ∈ A and z ‖ C, z < D; (IV) z ∈ A and z ‖ C, z ‖ D; (V) z ∈ C;

or (VI) z ∈ D.

After a move of type (I), by Lemma 4, since j 6∈ Q(A), we can never be in a position

with g-value j.

After a move of type (II), Am,n becomes B0,n, for some B ⊂ A. Since n ≥ |A|+j > |B|+j,

Lemma 5 gives us g(B0,n) 6= j.
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After a move of type (III), Am,n becomes Bm,0, for some B ⊂ A. Since z ‖ cm+1 and

z < d1, cm+1 6> d1. Since m ≥ |A| + j > |B| + j, Lemma 5 gives us g(Bm,0) 6= j.

After a move of type (IV), Am,n can become Bm,n, for any B ⊂ A, B ∈ H. Since

n ≥ W (A, j), if j ∈ Q(B) then g(Bm,n) 6= j. Hence, we need only look at sets B with

j 6∈ Q(B). Thus, there is a move of type (IV) from Am,n that leaves a position with g-value j

if and only if n ∈ {fB,j(m) | B ∈ H, j 6∈ Q(B)}.

After a move of type (V), Am,n can become Ai,n for any 0 ≤ i ≤ m − 1. Hence,

there is a move of type (V) from Am,n that leaves a position with g-value j if and only if

n ∈ {fA,j(i) | 0 ≤ i ≤ m − 1}.

After a move of type (VI), Am,n can become Am,i for any 0 ≤ i ≤ n−1. Hence, there is a

move of type (VI) from Am,n that leaves a position with g-value j if and only if n > fA,j(m)

(fA,j(m) exists by Lemma 6), or, equivalently, n ∈ {i | i > fA,j(m)}.

Combining these results, we see that there is a move from Am,n to a position with g-value

j if and only if (4) holds.

Lemma 8. Assume (3). For k 6∈ Q(A) and m ≥ |A| + k + max(|A| + k, W (A, k)),

fA,k(m) − m = min

(

{−|A| − k,−|A| − k + 1, . . . , |A| + k}∩

⋂

0≤j≤k−1
j 6∈Q(A)

(

{fA,j(i) − m | m − 2|A| − 2k ≤ i ≤ m − 1}

∪ {fB,j(m) − m | B ∈ H, j 6∈ Q(B)} ∪ {i | i > fA,j(m) − m}

)

− {fA,k(i) − m | 0 ≤ i ≤ m − 1, fA,k(i) − m ≥ −|A| − k}

− {fB,k(m) − m | B ∈ H, k 6∈ Q(B)}

)

. (5)

Proof. By Lemma 6, fA,k(m) exists, and Lemma 5 constrains its possible values to the set

{m−|A|−k, m−|A|−k +1, . . . , m+ |A|+k}. For each n ∈ {m−|A|−k, . . . , m+ |A|+k},

we need to check if Am,n can become a position with g-value j in one move for each j

with 0 ≤ j ≤ k − 1, and we need to check if Am,n can become a position with g-value k
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in one move. The n which satisfies the first condition but not the second is the value of

fA,k(m). Since m ≥ |A| + k + max(|A| + k, W (A, k)), n ≥ max(|A| + k, W (A, k)). Since

n ≥ W (A, k), Am,n can, in one move, become a position with g-value j for any j ∈ Q(A).

Thus, we need only check the values of j for which 0 ≤ j ≤ k − 1 and j 6∈ Q(A). Since

n ≥ max(|A| + k, W (A, k)) ≥ max(|A| + j, W (A, j)), we can apply Lemma 7. The values

of n (in the appropriate range) such that, in one move, Am,n can become a position with

g-value j for every 0 ≤ j ≤ k − 1 are:

{m − |A| − k, m − |A| − k + 1, . . . , m + |A| + k}∩

⋂

0≤j≤k−1
j 6∈Q(A)

(

{fA,j(i) | 0 ≤ i ≤ m − 1} ∪ {fB,j(m) | B ∈ H, j 6∈ Q(B)} ∪ {i | i > fA,j(m)}

)

(6)

For j < k and j 6∈ Q(A), if i ≤ m − 2|A| − 2k, then, by Lemma 5,

fA,j(i) ≤ i + |A| + j ≤ (m − 2|A| − 2k) + |A| + (k − 1) = m − |A| − k − 1,

so fA,j(i) 6∈ {m−|A|−k, m−|A|−k+1, . . . , m+ |A|+k}. Thus, we can add the restriction

i ≥ m− 2|A|− 2k +1 to the set {fA,j(i) | 0 ≤ i ≤ m− 1} without affecting the set (6). Since

m − 2|A| − 2k + 1 ≥ 0, we see that the set (6) is equal to:

{m − |A| − k, m − |A| − k + 1, . . . , m + |A| + k}∩

⋂

0≤j≤k−1
j 6∈Q(A)

(

{fA,j(i) | m − 2|A| − 2k + 1 ≤ i ≤ m − 1}

∪ {fB,j(m) | B ∈ H, j 6∈ Q(B)} ∪ {i | i > fA,j(m)}

)

(7)

Next, we need to eliminate the n for which there is a move from Am,n to a position with

g-value k. Since k 6∈ Q(A), m ≥ |A|+k, and n ≥ max(|A|+k, W (A, k)), Lemma 7 says that

there is a move from Am,n to a position with g-value k if and only if

n ∈ {fA,k(i) | 0 ≤ i ≤ m − 1} ∪ {fB,k(m) | B ∈ H, k 6∈ Q(B)} ∪ {i | i > fA,k(m)}. (8)

Combining (7) with (8), fA,k(m) is the single element of
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{m − |A| − k, m − |A| − k + 1, . . . , m + |A| + k}∩

⋂

0≤j≤k−1
j 6∈Q(A)

(

{fA,j(i) | m − 2|A| − 2k + 1 ≤ i ≤ m − 1}

∪ {fB,j(m) | B ∈ H, j 6∈ Q(B)} ∪ {i | i > fA,j(m)}

)

− {fA,k(i) | 0 ≤ i ≤ m − 1} − {fB,k(m) | B ∈ H, k 6∈ Q(B)} − {i | i > fA,k(m)}

(this set consists of all n such that g(Am,n) = k, and thus has the one element fA,k(m)).

Equivalently, fA,k(m) is the smallest element of

{m − |A| − k, m − |A| − k + 1, . . . , m + |A| + k}∩

⋂

0≤j≤k−1
j 6∈Q(A)

(

{fA,j(i) | m − 2|A| − 2k + 1 ≤ i ≤ m − 1}

∪ {fB,j(m) | B ∈ H, j 6∈ Q(B)} ∪ {i | i > fA,j(m)}

)

− {fA,k(i) | 0 ≤ i ≤ m − 1} − {fB,k(m) | B ∈ H, k 6∈ Q(B)}.

This set is clearly the same as

{m − |A| − k, m − |A| − k + 1, . . . , m + |A| + k}∩

⋂

0≤j≤k−1
j 6∈Q(A)

(

{fA,j(i) | m − 2|A| − 2k + 1 ≤ i ≤ m − 1}

∪ {fB,j(m) | B ∈ H, j 6∈ Q(B)} ∪ {i | i > fA,j(m)}

)

− {fA,k(i) | 0 ≤ i ≤ m − 1, fA,k(i) ≥ m − |A| − k} − {fB,k(m) | B ∈ H, k 6∈ Q(B)}.

Subtracting m gives equation (5).

Lemma 9. Assume (3). For any A and k, with k 6∈ Q(A), there exists NA,k ∈ N0, pA,k ∈ N

such that, if m ≥ NA,k, then fA,k(m) − m = fA,k(m + pA,k) − (m + pA,k).

Proof. We will prove this by strong double-induction on |A| and k—for some A and k, assume

that the lemma holds for all pairs (B, j) with B ⊂ A (in particular, for B ∈ H), j ≤ k, and
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j 6∈ Q(B), and also that it holds for all pairs (A, j) with j < k and j 6∈ Q(A). In the base

case for the induction, these assumptions are vacuously true. Let

p = lcm({pB,j | B ∈ H, j ≤ k, j 6∈ Q(B)} ∪ {pA,j | j < k, j 6∈ Q(A)})

with lcm(∅) interpreted as 1, and let

N = max({NB,j | B ∈ H, j ≤ k, j 6∈ Q(B)} ∪ {NA,j | j < k, j 6∈ Q(A)})

+ |A| + k + max(|A| + k, W (A, k))

with max(∅) interpreted as 0. For m ≥ N , from Lemma 8, we have the recursion (5).

Let S(m) = {fA,k(i)−m | 0 ≤ i ≤ m−1, fA,k(i)−m ≥ −|A|−k}. From Lemma 5, if i ≤

m−1, then fA,k(i)−m ≤ fA,k(i)−i−1 ≤ |A|+k−1. Hence, S(m) ⊆ {−|A|−k, . . . , |A|+k−1}.

This means that there are at most 22|A|+2k = 4|A|+k possibilities for S(m). Let mp be the

smallest nonnegative residue of m (mod p). There are clearly p possibilities for mp, so there

are at most 4|A|+kp possible pairs (S(m), mp). By the pigeonhole principle, there are two

different numbers m1, m2 with N ≤ m1 < m2 ≤ N + 4|A|+kp such that S(m1) = S(m2) and

(m1)p = (m2)p.

By the construction of p and N , for m ≥ N , all the sets on the right side of equation (5)

other than S(m), when viewed as functions of m, repeat with period p. Since (m1)p = (m2)p

and S(m1) = S(m2), equation (5) implies that fA,k(m1)−m1 = fA,k(m2)−m2 = r. We also

have S(m1+1) = S(m2+1), since they can both be computed by inserting the element r into

S(m1) = S(m2), then subtracting 1 from every element of the resulting set, then eliminating

from the set any element smaller than (−|A|−k). Furthermore, clearly, (m1+1)p = (m2+1)p.

Again, equation 5 implies that fA,k(m1 +1)− (m1 +1) = fA,k(m2 +1)− (m2 +1). Repeating

this argument, we get fA,k(m1 + i)− (m1 + i) = fA,k(m2 + i)− (m2 + i) for all i ≥ 0. Letting

NA,k = m1 and pA,k = m2 − m1, we get fA,k(m) − m = fA,k(m + pA,k) − (m + pA,k) for all

m ≥ NA,k.
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5 Periodicity Theorem

Now that we have proven Lemma 9, we will drop the assumption (3) and prove our general

theorem.

Poset Game Periodicity Theorem. Assume (1). For any k ∈ N0, either there are only

finitely many positions of the form Am,n with g-value k, or else there exists N ∈ N0, p ∈ N

such that, for m ≥ N , fA,k(m) − m = fA,k(m + p) − (m + p).

Proof. Note that the theorem holds for the sets C, D, A if and only if it holds for the sets

C ′ = C − {c1, . . . , cu}, D′ = D − {d1, . . . , dv}, and A′ = A ∪ {c1, . . . , cu} ∪ {d1, . . . dv}. This

occurs because, for n ≥ u, fA,k(n)− n = (fA′,k(n− u)− (n− u)) + (v − u), so the left side is

eventually periodic if and only if the right side is too; and, by Lemmas 1–3, there are only

finitely many positions of the form Am,n with g-value k if and only if there are only finitely

many positions of the form Am,n with g-value k and with m > u, n > v, so Q(A) = Q(A′).

By moving elements of C and D into A, we will show that we can assume (3), so that the

theorem follows from Lemma 9.

Assume that k 6∈ Q(A). If, for some i, ci > D, then by Lemmas 2 and 4, k ∈ Q(A),

a contradiction. If, for any a ∈ A, a > C or a > D, then a 6∈ Am,n for any m, n. Hence,

removing a from A will have no effect on the truth or falsity or the theorem, so we can

assume that no element of A is greater than all of C or all of D. We may thus assume

that every element of A ∪ C ∪ D is greater than only a finite number of other elements of

A ∪ C ∪ D.

We have four steps. In the first step, we move all of the elements of C ∪ D that are

smaller than an element of A into A, to get the new sets A(1) ⊇ A, C(1) ⊆ C, D(1) ⊆ D. For

each a ∈ A(1), either a ‖ D, or a < di for all sufficiently large i. Thus, in the second step,

we can move elements of D(1) into A(1) (making A(2) ⊇ A(1), C(2) = C(1), and D(2) ⊆ D(1))

so that, for each a ∈ A(1), a ‖ D(2) or a < D(2). By the same reasoning, in the third step,

we can move elements of C(2) into A(2) so that, for each a ∈ A(2), a < C(3) or a ‖ C(3).
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Finally, in the fourth step, we move all elements of D(3) that are smaller than an element of

(C(2) − C(3)) into A(3), to get A(4), C(4), D(4). Note that each of these steps moves only a

finite number of elements.

From any a ∈ A(1), a < C(4) or a ‖ C(4) (from the third step), and a < D(4) or a ‖ D(4)

(from the second step). For any a ∈ (A(2) −A(1)) = (D(1) −D(2)), a < C(4) or a ‖ C(4) (from

the third step), and a < D(4). For any a ∈ (A(3)−A(2)) = (C(2)−C(3)), a < C(4), and a ‖ D(4)

(from the fourth step and the fact that ci 6> dj). For any a ∈ (A(4) − A(3)) = (D(3) − D(4)),

a < C(4) and a < D(4). Hence, the assumption (3) is satisfied by A(4), C(4), D(4). As noted

above, replacing A, C, D by A(4), C(4), D(4) gives an equivalent problem, and by Lemma 9,

we are done.

6 Consequences of the Periodicity Theorem

In the special case where k = 0, D is the top row in Chomp, and C is the second-to-top

row in Chomp, this theorem resolves X. Sun’s conjecture about the periodic behavior of

P-positions in Chomp [10].

By Lemma 4 and the Poset Game Periodicity Theorem, for any A and k, either: (I) We

can find an M such that fA,k(m) does not exist for any m > M ; (II) fA,k(m) is constant for

m ≥ M ; or (III) fA,k(m) − m is periodic for m ≥ M , with period p.

We will say we have solved fA,k if we, in case (I), calculate fA,k(m) for every m where

fA,k(m) is defined; in case (II), calculate M and fA,k(m) for all m ≤ M for which fA,k(m) is

defined; or in case (III), calculate M , p, and fA,k(m) for all m < M + p for which fA,k(m) is

defined.

Lemma 10. Given A, C, D ⊂ X satisfying (1) and given k ∈ N0, we can solve fA,k in a

finite amount of time.

Proof. We will proceed by strong double-induction on |A| and k. Assume (vacuously in

the base case, and by the induction hypothesis otherwise) that we can solve fB,j in a finite
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amount of time for all B ⊆ A and j ≤ k (besides when B = A and j = k). Any solution

to fB,j can be represented by a finite set of integers. Hence, we can test a solution to fA,k

in a finite amount of time (by symbolically checking the recursive definition of g-value given

in Section 2.3). If we systematically try the countable number of possible solutions to fA,k

(of types (I), (II), and (III)), we will eventually find one that works, in a finite amount of

time.

Corollary 1. Given A, C, D ⊂ X satisfying (1) and given k ∈ N0, we can calculate fA,k(m)

(or show that it does not exist) in O(log m) time.

Proof. By Lemma 10, after some finite amount of time independent of m, we can solve fA,k.

After that, if fA,k is type (I) or (II), fA,k(m) can be trivially calculated in O(1) time. If fA,k

is type (III), for large m, we can reduce (m − M) (mod p) in O(log m) time (cf. [13]), and

then calculate fA,k(m) = fA,k(M + (m−M)p) in O(1) time. Thus, in any case, fA,k(m) can

be calculated (or shown not to exist) in O(log m) time.

Corollary 2. Given A, C, D ⊂ X satisfying (1) and given k ∈ N0, and letting m and n

vary, we can check whether g(Am,n) = k in O(log m) time.

Proof. By Corollary 1, we can calculate fA,k(m) in O(logm) time. By Lemma 5, if it exists,

fA,k(m) ≤ m+|A|+k. Hence, we can check if n = fA,k(m) in O(log(m+|A|+k)) = O(log m)

time. In total, then, we can check in O(logm) time.

This means that, given A, C, D ⊂ X, the problem of calculating g(Am,n) for a given m

and n is in the computational complexity class NP.

Corollary 3. Given A, C, D ⊂ X satisfying (1), the poset game starting with Am,n for any

m, n ∈ N0 has a polynomial-time winning strategy.

Proof. Any game position in such a game can be written as Bi,j for B ⊆ A and i, j ∈ N0.

Hence, the size of the input of a position Bi,j is (2|A| + log i + log j).
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By basic properties of g-values, in order to win, we must ensure that, after each move we

make, the new position has g-value 0. Suppose we are in a position Bi,j with g(Bi,j) > 0.

We must find a winning move x, in O(log ij) time, that leaves a position with g-value 0.

Before we start, we solve fA′,0 for each A′ ⊆ A. By Lemma 10, this takes a fixed, finite

amount of time. Next, we calculate t = fB,0(i). If t < j, then x = dt+1. Otherwise, calculate

fA,0(m) for j − |A| ≤ m ≤ j + |A|. If we get fA,0(m) = j and cm+1 ∈ Bi,j, then x = cm+1.

There are at most |A| more possible winning moves x, and each leaves a position A′
i′,j′ for

A′ ⊂ A, i′ ≤ i, j ′ ≤ j. We check if any of these has g-value 0 to find a winning move x.

By Corollary 2, we have taken (3|A| + 2)O(log i) = O(log i) time, which is polynomial with

respect to the input, so this is a polynomial-time winning strategy.

Corollary 4. In an infinite poset X, suppose there is an infinite chain C (c1 < c2 < · · · ),

and a finite subset A disjoint from C. For n ∈ N0, let An = A ∪ C − {x ∈ X | x ≥ cn+1}.

For large enough n, g(An) − n is periodic with respect to n.

Proof. Create a new poset X ′ as the disjoint union of X with an infinite set {d1, d2, . . .}. In

X ′, any element of D is incomparable to any element of X, the elements of X are ordered

as they were before, and the elements of D form a chain d1 < d2 < · · · . The poset game on

a finite subset of X ′ is the disjoint sum of two games: the game with elements of D (a game

of Nim), and the game with elements of A∪C. We know that g({d1, . . . , dn}) = n, since the

g-value of a nim-heap of size n is n. Hence, by elementary properties of g-values, g(Am) = n

if and only if g(Am,n) = 0 if and only if fA,0(m) = n, which means g(Am) = fA,0(m). The

corollary now follows directly from the Poset Game Periodicity Theorem.

Note that, in the case where the chain C is the top row in Chomp, this corollary proves

a conjecture stated by X. Sun in [12].
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Corollary 5. Given A, C ⊂ X, we can calculate g(An) in O(log n) time.

Proof. From the proof of Corollary 4, calculating g(An) is the same as calculating fA,0(n) in

a different poset X ′. Hence, this corollary follows from Corollary 1.

7 Future Work

The Poset Game Periodicity Theorem offers a significant advance in the theory of general

poset games. The results proved above provide avenues for possible future work in four

areas.

First, the Poset Game Periodicity Theorem is a powerful tool for finding winning strate-

gies and patterns in many poset games. In this paper we have provided a few applications

of the theorem to the game of Chomp. We expect that this theorem will also have impor-

tant direct applications to other famous unsolved poset games, like Subset-Takeaway [8] or

Schuh’s Game of Divisors [7], and to infinite poset games.

Second, we proved, in Corollary 2, that, given A, C, and D, the problem of calculating

g(Am,n) is in the complexity class NP. An extention of this result to either an algorithm for

calculating g(Am,n) in O((logmn)k) time, or to a proof that the problem is NP-complete,

would shed additional light on poset games.

Third, X. Sun’s algorithm to calculate g-values in Chomp [12] could presumably be

made more efficient by implementing Corollary 4. Also, his algorithm for calculating losing

positions in Chomp [10] could be altered to calculate positions with any fixed, small g-value,

since, by the Poset Game Periodicity Theorem, the periodic patterns that the algorithm

utilizes in P-positions also appear in positions with any fixed g-value.

Finally, it is plausible that the Poset Game Periodicity Theorem extends in a non-trivial

way to three or more chains. If so, it could finally lead to a general polynomial-time winning

strategy for poset games like Schuh’s Game of Divisors, solving this half-century-old problem.
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